PRETERM BIRTH & STI RISK ASSOCIATED WITH VAGINAL MICROBIOME DYSBIOSIS FINAL PRESENTATION

Hanna Shephard, Bih Moki-Suh, Chidozie D Iwu, Barclay Stewart

September 3, 2025

START CENTER

STRATEGIC ANALYSIS, RESEARCH & TRAINING CENTER

START OVERVIEW

Leverages leading content expertise from across the University of Washington

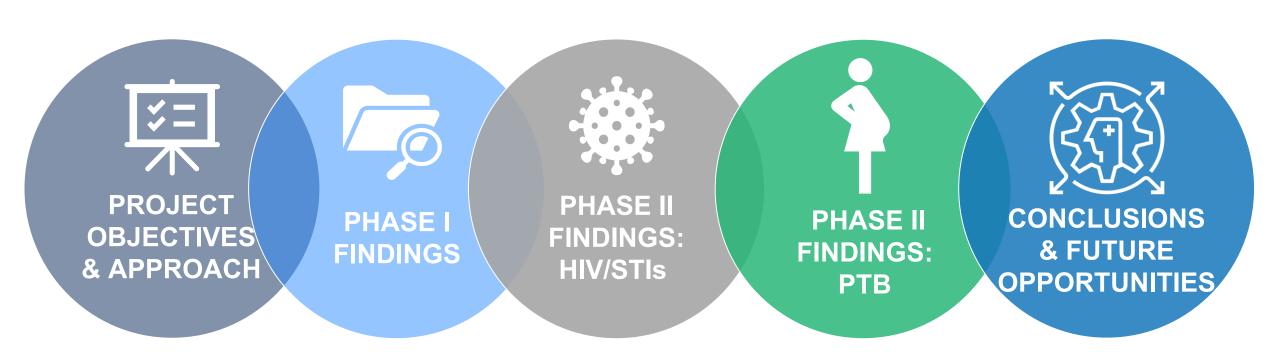
Provides high quality research and analytic support to the Gates Foundation and global and public health decision-makers

Provides structured mentorship and training to University of Washington graduate research assistants

PROJECT TEAM

Hanna Shephard, MPH
PhD Student, Epidemiology
Project Manager

Bih Moki-Suh, MSc
PhD Student, Implementation Science
Research Assistant



Chidozie D Iwu, MPH, MSc PhD Candidate, Epidemiology Research Assistant

Barclay Stewart, MD, PhD, MScPH Assistant Professor, School of Medicine Faculty Lead

PRESENTATION OVERVIEW

KEY PROJECT OBJECTIVES

Summarize the evidence examining the causal relationship between VMB dysbiosis or BV and 1) acquisition/transmission of HIV/STIs; and 2) risk of PTB.

Take a deeper dive to assess how diagnostic method (Amsel's vs. Nugent) and symptom status modify the relationship between vaginal dysbiosis/BV and PTB or HIV/STI risk, particularly in intermediate VMB states.

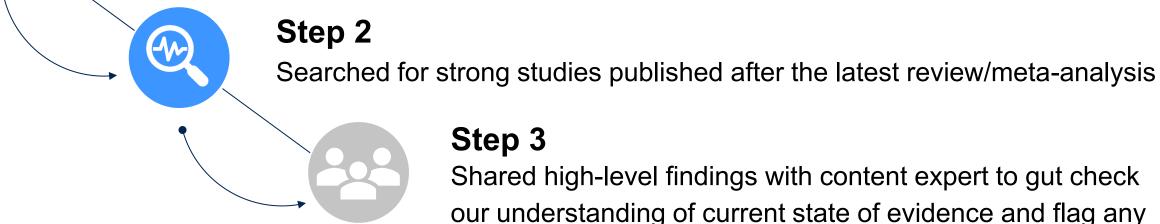
Develop considerations for future trials for VMB interventions.

WORKFLOW: TWO PHASE APPROACH

Phase 1

- Tiered evidence rapid literature review exploring most rigorous and recent data on VMB/BV and PTB and STI/HIV acquisition/transmission
- Client meeting to discuss findings and align on next steps

Phase 2


- Deeper dive into literature on intermediate microbiota states and PTB and STI/HIV acquisition & review VMB-related clinical trials
- Hold 3 key informant interviews to validate key findings and inform considerations for future trial design

TIERED EVIDENCE RAPID LITERATURE **REVIEW OVERVIEW**

Step 1

Identified the most recent systematic review & meta-analysis

Step 3 Shared high-level findings with content expert to gut check our understanding of current state of evidence and flag any

additional important studies

FOCUS AREAS

VMB & PTB: 12 studies

 VMB & HIV acquisition/transmission: 5 studies

 VMB & STI acquisition/transmission: 9 studies Database: PubMed Articles extracted: 26

PHASE I FINDINGS: Rapid Literature Review

A note on defining the strength & quality of the evidence

Weaker evidence	Moderate evidence	Stronger evidence
Small sample size Low effect size (RR <1.5) Wide confidence intervals No adjustment for key confounders		 Large, multi-site studies or meta-analyses Consistent findings across populations Strong effect size (RR >2.0) Rigorous adjustment for confounding and bias

PHASE I SUMMARY: BV/VMB & PTB

BV is moderately associated with PTB: A pooled analysis (Mohanty et al. 2022) found a moderate association (RR 1.44), but findings were constrained by diagnostic variability, small sample sizes, and limited ability to control for confounding. Only two studies showed statistically significant results, and overall effects were smaller than in prior meta-analyses

Lactobacillus dominance is often associated with lower PTB risk (Ferrante et al. 2025): L. crispatus-dominant microbiota (CST I) are consistently associated with lower PTB risk, while Lactobacillus-depleted communities (CST IV) are linked to higher risk. L. iners-dominant profiles (CST III) show mixed associations, likely reflecting transitional states.

VMB patterns vary by ancestry and shift over pregnancy: Fettweis et al. & Callahan et al. complicate this picture of a consistent VMB signature of PTB, reporting a spectrum of VMB states associated with PTB that differ between women of African ancestry and women of European ancestry.

To date, randomized controlled trials aimed at treating BV (including trials with live biotherapeutics), have not consistently reduced PTB risk (Wu et al. 2025).

PHASE I SUMMARY: BV/VMB & HIV

Consistent association (Low et al. 2011; Hilber et al. 2010): Women with BV (Nugent 7-10) have ~1.5–2× higher HIV acquisition risk; Amsel-based results are less consistent due to diagnostic variability.

Microbiota composition (Gosmann et al. 2017): High-diversity, low-Lactobacillus states (>4× risk) vs. *L. crispatus* dominance (protective). *L. iners* often linked to higher risk, though variable across ancestry groups.

Intermediate states (Low et al. 2011): Nugent 4–6 linked to ~1.5× higher HIV acquisition in some cohorts, suggesting these states are not benign.

Population differences (Eastment & McClelland, 2018): Strongest associations seen in African and African American women; weaker in European/Asian cohorts.

Limitations: Heterogeneity in diagnostics, confounding, and reliance on high-risk populations constrain causal inference; few RCTs directly test microbiome modification as HIV prevention.

PHASE I SUMMARY: BV/VMB & STIS

High-Level Summary

RCT evidence demonstrates that treating BV reduces STI incidence, supporting a causal link between BV and STI acquisition. Further trials are needed to track microbial shifts, clarify the protective role of Lactobacillus, and test stabilization strategies such as probiotics—while carefully accounting for condomless sex as a key confounder.

Chlamydia, Gonorrhea, Trichomonas

Consistently higher prevalence with BV (Nugent 7–10); the effect is strongest for CT (Carter et al. 2021) and TV (Carter et al.; Sethi et al. 2024).

M. genitalium Strong evidence that recent BV increases M. gen susceptibility. Co-occurrence may worsen outcomes beyond either infection alone (Lokken et al. 2017)

Syphilis

No consistent association, very low prevalence; no variation across Nugent categories (Sethi et al. 2024).

PHASE 2

PHASE 2 KEY QUESTIONS

INTERMEDIATE MICROBIOTA

How does the presence of intermediate Nugent scores relate to PTB and HIV/STI risk, and what are the implications for including or excluding this group in future trials?

SYMPTOM STATUS

How does vaginal symptom status influence PTB and HIV/STI risk, and how might this guide participant selection, screening criteria, or stratification in future trials?

KEY TRIAL DESIGN LEVERS

What are the critical parameters for an effective and feasible trial to modify the vaginal microbiome for PTB or HIV/STI prevention?

- Exposure and outcome measurement
- Sample size achieving adequate power
- Type of intervention eliminating BV vs. achieving *L. crispatus* dominance, therapeutic regimen
- Timing of intervention optimal point(s) in pregnancy or reproductive life course
- Study population characteristics including geography, race/ethnicity, underlying risk factors, and care access

PHASE 2 METHODS

Deeper dive into literature on intermediate microbiota states and PTB and STI/HIV acquisition & review VMB-related clinical trials

Hold 3 key informant interviews to validate key findings and inform recommendations

Develop considerations for future trial design

KEY INFORMANT INTERVIEWS

R. Scott McClelland, MD, MPH
Infectious Disease Physician &
UW Professor in Epidemiology,
Global Health, & Medicine

Expertise: women's reproductive
health, vaginal microbiome, STIs
epidemiology, clinical and
translational science

Sharon Hillier, PhD

Microbiologist, Endowed Chair in
Reproductive Infectious Disease &
Vice Chair in Department of
OB/GYN at University of Pittsburgh
Expertise: microbiology, vaginal
microbiome, reproductive health, codeveloped Nugent scoring system

Christina Muzny, MD
Professor of Medicine &
Medical Director of the ID
Vaginitis Clinic at University of
Alabama at Birmingham
Expertise: pathogenesis of
BV, prevention of BV and T.
vaginalis

PHASE II FINDINGS: Considerations for HIV/STI prevention trial design

STUDY POPULATION CHARACTERISTICS: HIV/STI

Study Population	
Characteristics	

Exposure Measurement

Intermediate Microbiota

Intervention Type

Symptom Status

Intervention Timing

Outcome Measurement

Sample Size

Key Findings

- Reproductive-age, sexually active women recruited from high-prevalence and high-risk settings (e.g., sub-Saharan Africa, STI clinics, sex worker cohorts) showed positive associations between BV, vaginal dysbiosis, and HIV/STI acquisition (Julius et al. 2008)
- Women with BV and other STIs (*T. vaginalis*, *M. genitalium*, *C. trachomatis*) vs those without (Chacra et al., 2023), and those with high-diversity, low-Lactobacillus (especially *L. iners*-dominant) vs *L. crispatus*-dominant microbiota were at higher risk of BV–HIV/STI associations (Gosmann et al., 2017)

Trial Design Considerations

- Recruiting women from high-risk settings, high-prevalence populations (e.g. sex workers, STI clinics) will maximize the number of events, but may not apply to women outside these groups
- Screening for coinfections and stratifying participants by vaginal microbiota composition
 (e.g., *L. iners* vs. *L. crispatus*) are critical to understanding differential risks and intervention effects

INTERMEDIATE MICROBIOTA: HIV/STI

Study Population Characteristics	Exposure Measurement	Intermediate Microbiota	Intervention Type	Symptom Status	Intervention Timing	Outcome Measurement	Sample Size		
	Prospective studies suggest intermediate Nugent (4–6) and BV carry ~1.5-fold higher HIV risk								
Key Findings					•	% CI 0.63–1.65) (M ed in African cohorts	,		
				•	MIP-1α/β, increa (Mitchell & Marraz	sed activated CD4+ zzo 2014)	- target cells, and		
	• Most stud	lies do not disag	gregate intermedi	iate (4–6) from	BV (7–10)				
Trial Design			capture transitio er by state or pers		ctobacillus domina	ance, intermediate,	and BV, testing		
Considerations	• Power stu	udies for stratified	d analyses with in	termediate mic	robiota group sep	parate from BV			
	• Consider acquisitio		mmatory or other	immune marke	ers as other trial e	ndpoints in addition	to STI or HIV		

INTERVENTION TYPE: HIV/STI

Study Population Characteristics	Exposure Measurement	Intermediate Microbiota	Intervention Type	Symptom Status	Intervention Timing	Outcome Measurement	Sample Size
Key Findings	and MG (II time to firs BV recurs Metronida:	RR 0.54; 95% CI, t STD (p=0.02) ar in ~50–80% of wo	.32–.91). Asymp nd reduced 6-mo omen within 6–12 crispatus CTV-	otomatic-BV RC STD rate (primon 2 months (Brad 05 reduced BV	CT (Schwebke & Inarily CT) shaw & Sobel, 20 recurrence (RR 0	Desmond, 2007): tre	,
Trial Design Considerations	rates of B\ Power trial as a secon and burde Consider p	/ with standard ca I for incident STIs ndary endpoint (pe n	are. Include longing (composite of Composite	tudinal measurd T/NG/MG), mirr resmond), plus ough a factoria	ements to ensure roring Balkus et a STI incidence rat	treatment, given the that treatment was I. (IRR≈0.54). Includ te over follow-up to d ove feasibility and isc	successful. de time-to-first STI capture both onset

PHASE II FINDINGS: Considerations for trial design to reduce PTB

STUDY POPULATION CHARACTERISTICS: PTB

Study Population Characteristics	Exposure Measurement	Intermediate Microbiota	Intervention Type	Symptom Status	Intervention Timing	Outcome Measurement	Sample Size
Key Findings	 (Fettweis et a In the US, African American American American American Prince Prin	al., 2019) rican American w ., 2021) rican women vs of PTB (Fettweis et a	ther ethnicities ar l., 2019) condom inconsis	er <i>L. iner</i> s and re 2× more like stency, vaginal	non-Lactobacillus ly to be diagnose douching) disrup	t protective commu	iced <i>L. crispatus</i> ,
Trial Design Considerations	risksEnrolling won women with least	nen with high BV ower behavioural	risk (e.g., multipl I risk profiles	le/new partners	s, douching) ↑ fea	omen with different asibility but limits ap ion (due to microbia	oplicability to

INTERMEDIATE MICROBIOTA: PTB

Study Population Characteristics	Exposure Measurement	Intermediate Microbiota	Intervention Type	Symptom Status	Intervention Timing	Outcome Measurement	Sample Size
Key Findings	 Intermediate flora (Sethi et la flora (Sethi et la flora (Sesay Dissemble 1) Evidence or 2024); micro "Intermediate now beginning 	e Nugent is a more at al. 2023) as we evaginal microbio ertation 2025). The PTB risk is null vobiome shifts across for the appreciate.	e opportunistic st Il as other infection Ita demonstrated With wide CIs - me In wide CIs - me	ate for co-occurre ons like Group B s a significantly hig eta-analysis (Leed aters et al., 2008)	ence with T. Vagina Streptococcus (Me her risk of cervicitie current BV ↑ PTB r). In different Gardner cept and better und	V (Hillier et al. 1992 alis and other STIs n yn, Krohn & Hillier 2 s compared to Nuge isk (OR 1.66) (Blum rella morphotypes th derstanding of the p	nore than normal (2009) ent 0-3 and BV enfeld et al.,
Trial Design Considerations	cervicitis Enrich Nuge	ent 4–6 group with	n cervicitis/inflamr	•	a (Sneathia, BVAB	crease risk through t	

Include cervicitis/inflammation and opportunistic infections (*T. vaginalis*, GBS) as outcomes alongside PTB

INTERVENTION TYPE: PTB

Study Population Characteristics	Exposure Measurement	Intermediate Microbiota	Intervention Type	Symptom Status	Intervention Timing	Outcome Measurement	Sample Size
	probiotics, or o	combined regimer	ns did not reduce	e PTB overall (R	RR 1.00, 95% CI	ting BV in pregnanc 0.80–1.24). IPD met	a-analysis
Key Findings	evaluate treati Standard antib	ment efficacy.	duce concentrati	ions of most BV	·	ier treatment window eria in pregnancy, bu	
	 Augmentation Anukam et al. 	of antibiotic treat	ment with probio tions in genital ir	tic regimens ha	•	d cure rates of BV (I otion biomarkers(Lac	Martinez et al. 2009; ctin-V immunology
Trial Design Considerations	Lacto dominance) at	t predefined					
	-	mune/inflammato s secondary outco	•		-	al disruption) and va reduce PTB.	ıginal microbiome

SYMPTOM STATUS: PTB

Study Population Characteristics	Exposure Measurement	Intermediate Microbiota	Intervention Type	Symptom Status	Intervention Timing	Outcome Measurement	Sample Size	
		•	•	• •	• •	cases are microbio ya et al, 2017;Afola	•	
Key Findings	In contrast, la	•	es consistently c	onfirm that BV v	with mixed sympt	cise but suggestive om status consiste a 2014)	•	
	vs.late (28–3		ed-symptom coh	_		ns when sampled e ronger, significant e		
Trial Design	 Deliberately enroll asymptomatic women early in pregnancy, to capture the risk-relevant BV burden and prevent diluting effects with symptom-driven care. 							
Considerations	Pre-specify	spontaneous PTE	B as the primary	outcome; exclud	de medically indic	cated PTB.		
	•		•			d longitudinally (dis be targeted in trials	•	

OUTCOME MEASUREMENT: PTB

Study Population Characteristics	Exposure Measurement	Intermediate Microbiota	Intervention Type	Symptom Status	Intervention Timing	Outcome Measurement	Sample Size
Key Findings	2022) • Earlier PTB • Microbiome- lump all PTB • "There think the of som Hillier). • BV independent	effects are stron related PTB also <37 weeks. is just a ton of pro- ne relationship [be e early pre-term i	ger: BV shows of tends to occur re-term births that etween BV and Fibirths? Yes. But the risk of preter	elearer association The street of the second secon	ions when births of 32–34 weeks), maken 32 and 37 we retty muddy. Do lies look at just the eight infants (OR	occur <34 weeks. (Naking measurement eeks that's just not in	difficult if studies ofectious at all. So I tus reduces the risk so few''. (Sharon
Trial Design Considerations	ensure consi birthweight (l	stent classification TB–LBW) to cap	on across sites. Continued the broade	Consider incorpersions of a	orating a compos dverse neonatal c	site outcome (e.g., P	
	Accurate G	A dating (early ul	trasound) manda	atory; blinded a	djudication comm	nittee.	

SAMPLE SIZE: PTB

Study Population Characteristics	Exposure Measurement	Intermediate Microbiota	Intervention Type	Symptom Status	Intervention Timing	Outcome Measurement	Sample Size
Key Assumptions	 Infection BV suppressing Cohen et al. 2 Preventable starises from BN Implied PTB of RR PTB = 1 g=0.50: RR g=0.75: RR g=1.00: RR 	on efficacy: Lacti 020, Phase 2b tri share of infection- //dysbiosis or its effect from BV su - (0.40 × 0.34 × 0 PTB ≈ 0.93 (6.80 PTB ≈ 0.90 (10.20 PTB ≈ 0.86 (13.60	on: 40% of PTB on. n-V + 5-day vagiral) mediated PTB (goinflammatory sequence) ppression: g) → %↓) 2%↓) 5%↓)	nal metronidazo	to infectious/inflated to le reduces BV results (1.0 assumes <i>al</i> theoretical)	risk cohort) ammatory pathways currence by 34% (F	RR BV = 0.66;

SAMPLE SIZE: PTB

Baseline PTB Risk	G=0.50 (RR=0.93) (Realistic)	G=0.75 (RR=0.90) (Optimistic)	G=1.0 (RR=0.86) (Theoretical Ceiling)
11% (global average)	8,800 (80% power) 11,800 (90% power)	3,400 (80%) 4,600 (90%)	2,000 (80%) 2,600 (90%)
20% (high-risk cohort)	3,600 (80%) 4,800 (90%)	1,400 (80%) 1,800 (90%)	900 (80%) 1,200 (90%)

Note: these sample size calculations are for a general population. To sufficiently power a trial with stratified analyses, sample size would likely increase by ~30-50%

CONCLUSIONS & OPPORTUNITIES

CONCLUSIONS

1

BV is modestly associated with PTB, but evidence of reduction in PTB with treatment of BV from RCTs is limited

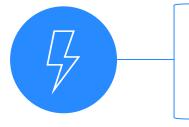
2

Evidence linking BV and intermediate microbiota to HIV/STI acquisition is stronger and more consistent

3

Intermediate microbiota group is rarely analyzed separately from those with BV, however, current evidence does not suggest an increased risk of PTB

Standard antibiotic regimens achieve short-term cure, but recurrence is high; live biotherapeutic approaches show greater durability



OPPORTUNITIES

Feasible trial designs

- PTB as a single endpoint would require large sample size, especially with stratified populations
- STI prevention would require fewer participants

Efficiency gains

- Consider composite endpoints (PTB-LBW, multiple STIs)
- Recruit from high-incidence populations to maximize event accrual

Mechanistic insights

 Strengthen causal inference through collection of inflammatory and immune markers to uncover mechanisms of protection or risk

Bundled interventions

 Pair VMB intervention with other strategies addressing other modifiable risk factors for PTB or STI/HIV acquisition to maximize impact

THANK YOU

APPENDICES

APPENDICES

- A Detailed Study Findings
- B Directed Acyclic Graph
- Additional Trial Design Considerations
- Literature Extraction Sheet

APPENDIX A: Detailed Study Findings

DETAILED STUDY FINDINGS - BV/VMB & PTB

High-level outcome summary (Mohanty et al.): A significant association between BV and PTB, with a pooled RR of 1.44 (95% CI: 1.19–1.73) was observed. The analysis included 20 studies contributing 26 effect estimates, though only 6 studies were included in the RR meta-analysis. While the overall association was statistically significant, substantial heterogeneity was noted across studies in terms of BV diagnostic methods (e.g., Nugent score, Amsel's criteria, self-report), timing of diagnosis during pregnancy, and study geography. Importantly, only two individual studies contributing to the RR estimate demonstrated statistically significant results, one of which relied on self-reported BV. Despite these methodological differences, the findings reinforce a modest but consistent association between BV and increased PTB risk, particularly when BV is diagnosed later in pregnancy.

Geography: Global (studies included from multiple continents including South America, Sub-Saharan Africa, South Asia, and North America)

No. of studies: 22, 6 included in pooled RR

Key participant characteristics: varied asymptomatic/symptomatic, limited stratification by SES

BV/VMB classification & diagnostic method: Nugent (5 studies), Self-report (1 study)

Specific info on intermediate microbiota: Nugent 4-6 category acknowledged but not analyzed separately

Main finding: Significant association between BV and PTB - RR 1.44 (95% CI: 1.19-1.73)

Key limitations: inability to stratify by intermediate Nugent score vs. BV, heterogeneity in geography of studies, wide confidence intervals/small sample sizes in included studies.

DETAILED STUDY FINDINGS: BV/VMB & PTB

High-level outcome summary (Ferrante et al.): This systematic review of 38 studies evaluated the relationship between the VMB and risk of PTB. Although the review did not include a meta-analysis, consistent patterns emerged across studies: *Lactobacillus crispatus*-dominant communities (CST I) were associated with reduced risk of sPTB, while *Lactobacillus*-depleted communities (CST IV) were more commonly observed among those who delivered preterm. *L. iners*-dominant microbiota (CST III) showed inconsistent associations and may represent a transitional state. The review highlighted substantial heterogeneity in methods used to characterize the vaginal microbiota (including sequencing region, bioinformatics pipelines, and CST definitions), as well as differences in sampling time and population risk profiles. Few studies stratified results by key modifiers such as race, parity, or prior preterm birth, limiting conclusions about differential effects. Nevertheless, findings support the hypothesis that vaginal microbiota composition plays a role in sPTB risk, particularly the protective role of *L. crispatus* and the potential adverse role of *Lactobacillus*-depleted states.

Geography: Global (North America, Europe, Sub-Saharan Africa, Asia)

No. of studies: 38

Key participant characteristics: diverse risk profiles, limited reporting on race/ethnicity, prior PTB, parity, or treatment

BV/VMB classification & diagnostic method: CST classifications; 16S rRNA gene sequencing

Specific info on intermediate microbiota: Nugent scores not used; intermediate flora not explicitly defined; CSTs used instead to capture gradations in community structure

Main finding: CST I (*L. crispatus*) protective; CST IV (diverse anaerobes) associated with elevated sPTB risk; CST III (*L. iners*) showed inconsistent associations

Key limitations: heterogeneity in sequencing and CST definitions, poor stratification by key modifiers

DETAILED STUDY FINDINGS: BV/VMB & PTB

High-level outcome summary (Fettweis et al.): This large prospective U.S. cohort study of 1,572 pregnancies (597 with longitudinal vaginal microbiome sampling), found that PTB was associated with distinct vaginal microbiome dynamics, particularly among women of African ancestry. Women who delivered at term were more likely to have Lactobacillus crispatus-dominant microbiomes. In contrast, PTB was linked to increases in specific bacterial taxa (A. vaginae, BVAB1, G. vaginalis, P. amnii, S. amnii, TM7-H1), especially in African ancestry participants. European ancestry participants showed generally stable microbiomes, with only a modest increase in G. vaginalis among those with PTB. Overall, the study highlights ancestry-specific microbial patterns and suggests that shifts in vaginal microbial composition over pregnancy are more pronounced in African ancestry women who go on to deliver preterm.

Geography: US Sample size: 597

Key participant characteristics: predominantly African ancestry,

BV/VMB classification & diagnostic method: relative abundance of relevant vaginal bacteria taxa; 16S rRNA gene sequencing

Specific info on intermediate microbiota: Nugent scores not used; intermediate flora not explicitly defined Main finding: women who went onto deliver term were more likely to have L. crispatus dominant VMB (p=0.014); variations in relative abundance of specific taxa over the gestational period and by ancestry

Key limitations: very strong study with large sample size; no notable limitations

DETAILED STUDY FINDINGS: BV/VMB& HIV ACQUISITION/TRANSMISSION

High-level outcome summary: Disrupted vaginal microbiota, including BV and intermediate states, is linked to increased HIV acquisition and transmission risk. Associations vary by classification method, with limited generalizability across settings.

71330Clations vary by class	sincation method, with timited generalizability across settings.
Geography:	-Systematic reviews and metanalysis majorly included studies from sub-Saharan Africa ^{1,2} -The cohort studies reviewed were conducted in Africa, particularly in Southern and Eastern African countries ^{4,5}
Sample size:	-Number of women enrolled in the meta-analysis of individual participant data from 13 prospective cohort study was 14,874 ² -Number of women enrolled in the primary studies of the systematic review and meta-analysis ranged from 154-4531 ³ -Number of women enrolled in other cohort studies reviewed ranged from 236-2236
Key participant characteristics:	-Majorly reproductive age group, with median age 30 years in the systematic reviews, and <25 years in the cohort studies -Pregnancy status of participants were not explicitly mentioned in the studies -Participants in the systematic reviews self-identified as sex workers, work in bars, live with HIV partners
BV/VMB classification & diagnostic method:	-Majorly Nugent scores. Some studies used CST and CT dominance framework via 16S rRNA gene sequencing
Info on intermediate microbiota	-Intermediate vaginal microbiota (Nugent 4–6) was associated with increased risk of HIV acquisition in one study (pooled aHR 1.54 (95% CI: 1.20–1.97) ² -In contrast, no significant association was found between intermediate vaginal microbiota (Nugent 4–6) with HIV transmission ([aHR: 1.63 (95% CI: 0.62–4.26)] ⁴
Main finding:	-BV (Nugent 7–10) is consistently associated with increased HIV acquisition and transmission: aHRs range from 1.53–1.69 for acquisition ^{2,3} ; aHR 3.17 (95% CI: 1.37–7.33) for female-to-male transmission ⁴ -High-diversity, low-Lactobacillus communities (CT3/CT4) showed >4-fold increased HIV acquisition risk compared to <i>L. crispatus</i> -dominant: [CT4: HR 4.03 (95% CI: 1.14–14.27); CT3: HR 4.22 (95% CI: 1.06–16.88)] ⁵ -No HIV acquisition occurred among women with <i>L. crispatus</i> -dominant communities ⁵
Key limitations:	-Variability in BV/VMB classification and lack of standardized reporting hindered comparison across studies -Most data came from specific high-risk groups (e.g., HIV-serodiscordant couples), which may not reflect broader populations -Unclear timing between microbiota sampling and HIV infection

START CENTER

¹Carter et al. 2023, DOI: 10.1097/OLQ.00000000001744 (Systematic review and metanalysis)

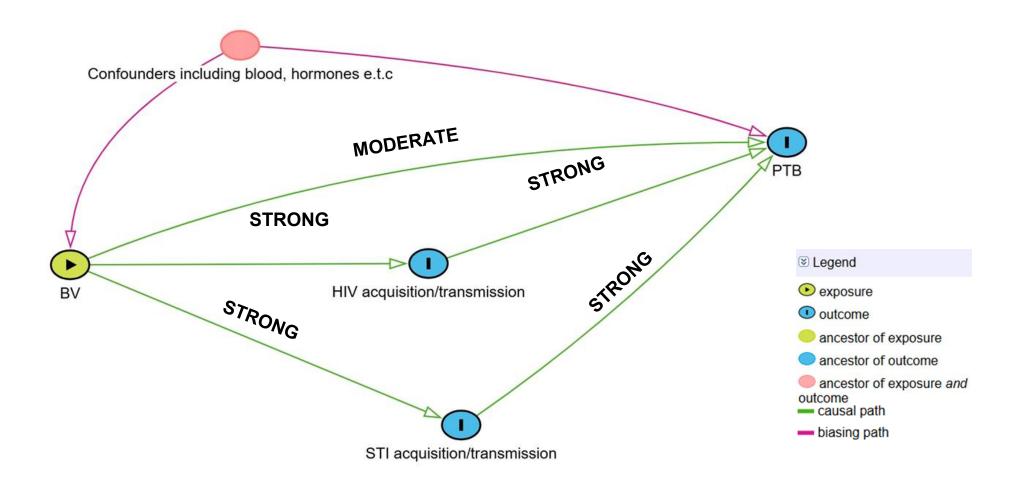
²Low et al. 2011, DOI: 10.1371/JOURNAL.PMED.1000416 (Meta-analysis of individual participant data from 13 prospective cohort study)

 $^{^3}$ Hilber et al. 2010, DOI: 10.1371/JOURNAL.PONE.0009119 (Systematic review and metanalysis)

⁴Cohen et al. 2012, DOI: 10.1371/JOURNAL.PMED.1001251 (Prospective cohort study)

⁵Gosmann et al. 2017, DOI: 10.1016/j.immuni.2016.12.013 (Prospective cohort study)

BV/VMB & STI ACQUISITION/TRANSMISSION: KEY FINDINGS


STI	Sample Size & Geography	BV/VMB classification & diagnostic method		Main findings	Key limitations
Chlamydia trachomatis ¹	N>402 across all 7 studies (Systematic	L. iners vs L. crispatus dominance via community state	Classified by dominant taxa classification; using 16S rRNA gene sequencing to determine which bacterial species is most abundant	L. iners-dominated vaginal communities were consistently associated with a higher prevalence or odds of CT infection compared to L. crispatus-dominated communities. Women with L. iners dominance had 4.2 times higher	
Neisseria gonorrhoeae ²	N = 3531 (Cross sectional), India		No consistent change in NG prevalence across 4- 6 category	Increased NG prevalence in Nugent 7-10 (11.1%) vs 0 –3 (0.3%). BV associated with increased GC prevalence; intermediate flora not significantly elevated	No behavioral confounder adjustment
Trichomonas vaginalis ^{1,2}	N= 394, United States ¹ , N = 3531, (Cross sectional) India ²	Nugent Score (0-3, 4-6, 7-10)	Intermediate flora (4-6) showed elevated risk compared to normal flora	PR ~1.56 (95% CI 0.08–93.14); extremely wide CI; inconclusive ¹ . Prev increases with Nugent score: 1.0% (0-3) to 3.8% (4-6),to 5.2% (7-10) ² . BV and intermediate flora both associated with increased TV prevalence	Cross-sectional; cannot infer causality
M. gen ³	N = 280 (Prospective cohort), Kenya	Nugent Score (0-3, 4-6, 7-10)	Women with intermediate microbiota had a 1.70-fold increased odds of acquiring <i>M. genitalium</i> compared to those with normal microbiota ³	Women with BV, defined by a Nugent score ≥7, had a 3.5-fold higher odds of acquiring M. gen	Potential exposure misclassification
Syphilis ²	N = 3531 (Cross sectional), India	Nugent Score (0-3, 4-6, 7-10)	No significant difference across Nugent groups	Syphilis prevalence remained consistent across all Nugent categories (~1.3%) with no significant association (p=0.993)	Low event rate; underpowered to detect associations

^{1.} Carter KA, Fischer MD, Petrova MI, Balkus JE. Epidemiologic Evidence on the Role of Lactobacillus iners in Sexually Transmitted Infections and Bacterial Vaginosis: A Series of Systematic Reviews and Meta-Analyses. Sex Transm Dis. 2023 Apr 1;50(4):224-235. doi: 10.1097/OLQ.0000000000001744. Epub 2022 Dec 1. PMID: 36729966; PMCID: PMC10006306.

^{2.} Sethi S, Yadav R, Sharma N, Dadwal R, Chaudary H, Kaur K, et al. Association of intermediate Nugent Score and bacterial vaginosis with sexually transmitted infections and vulvovaginal candidiasis. Indian J Dermatol Venereol Leprol. 2024;90:296-301. doi: 10.25259/IJDVL 775 2022

^{3.} Lokken EM, Balkus JE, Kiarie J, Hughes JP, Jaoko W, Totten PA, McClelland RS, Manhart LE. Association of Recent Bacterial Vaginosis With Acquisition of Mycoplasma genitalium. Am J Epidemiol. 2017 Jul 15;186(2):194-201. doi: 10.1093/aje/kwx043. PMID: 28472225: PMCID: PMC5860020.

APPPENDIX B: DIRECTED ACYCLIC GRAPH (DAG) DEPICTING THE CAUSAL RELATIONSHIP BETWEEN BV/VMB & PTB, HIV ACQUISITION/ TRANSMISSION, & STI ACQUISITION/TRANSMISSION

APPENDIX C: Additional Trial Design Considerations

EXPOSURE MEASUREMENT: HIV/STI

Study Population Characteristics	Exposure Measurement	Intermediate Microbiota	Intervention Type	Symptom Status	Intervention Timing	Outcome Measurement	Sample Size
Key Findings	aHR 2.4, 1.5 fold ↑ • CST IV (crispatus trachoma	95% CI: 1.9–3.0 risk [Myer et al., low-Lactobacillus (CST I) is protecting [Carter et al., nonly co-occurs when the co-occurs w	[Balkus et al., 20 2005]). , anaerobe-rich) - tive, whereas <i>L. i</i> 2023]). vith STIs (e.g., <i>T.</i>	15]). Amsel (≥3 → ~4-fold ↑ HIV ners (CST III) ↑	3/4) shows weake / risk (Anahtar et a h HIV/STI suscept achomatis, N. gor	stashili et al., 2008] r, less consistent a al., 2015; Gosmani tibility (e.g., 3.4-fold norrhoeae), with co	ssociation (~1.3– n et al., 2017). <i>L.</i> d ↑ odds of C. infections more
Trial Design Considerations	• Use 16S		g to classify CSTs	s and differentia	ate species (e.g.,	ess-study comparat	•

Test for common STIs (CT, NG, TV, MG, HSV-2, syphilis) to capture synergistic effects on HIV/STI risk.

OUTCOME MEASUREMENT: HIV/STI

Study Population Characteristics	Exposure Measurement	Intermediate Microbiota	Intervention Type	Symptom Status	Intervention Timing	Outcome Measurement	Sample Size		
Key Findings	 HIV: Very fr of incidentin MG: Monthl BVepisodes CT: Quarter 	nfections and dire ly BV assessmen s, showing recent rly testing over a	wice-weekly HIV lectly associates that and bimonthly BV as a strong rull year enabled	RNA, plus quar nem to baseline MG NAATs allo risk factor. (Lokl persistence ve	rterly clinical visits microbiota states owed detection of ken 2017) rsus clearance tra	s allowed for precises. (Gosmann 2017) f new MG infections acking, showing tha	s shortly after		
	• TV : Multiple	 BV/intermediate floraimpaired spontaneous clearance (Brown 2023) TV: Multiple longitudinal cohorts pooled in a meta-analysis consistently demonstrated ~2× higher incidence of TV in BV-positive women. (Seña 2021) 							
Trial Design Considerations	For acquisit	tion, follow-up ne	eds to be ≥12 mo	onths with regula	e, or transmission. ar STI testing (inc platforms to redu	creases trial cost/log	gistics;		
	• For persistence, shorter (3–6 months) follow-up with microbiota monitoring may be sufficient.								

INTERVENTION TIMING: HIV/STI

Study Population Characteristics	Exposure Measurement	Intermediate Microbiota	Intervention Type	Symptom Status	Intervention Timing	Outcome Measurement	Sample Size
		at the preceding	·	•	•	2017)	
Key Findings	Observation	nal studies show	dysbiosis increa	ses acquisition	risk in real-time	follow-up; intervent vindow(Lokken, 201	
Trial Design Considerations	after antibio	otics) to keep com	nmunities in a pro	otective state.		ic/live biotherapeut) to maintain coloniz	·

SYMPTOM STATUS: HIV/STI

Study Population Characteristics	Exposure Measurement	Intermediate Microbiota	Intervention Type	Symptom Status	Intervention Timing		
Key Findings	et al, 2017) Intermediat healthy mic	e microbiota is robiota (Sethi et a	usually asympto al, 2024)	matic and is a		elevated HIV/STI r	·
Trial Design Considerations	risk is elev	ated.	·	·	·	clude asymptomation	

SAMPLE SIZE: HIV/STI

Study Population	Exposure	Intermediate	Intervention	Symptom	Intervention	Outcome	Sample Size
Characteristics	Measurement	Microbiota	Type	Status	Timing	Measurement	
Key Assumptions	 as primary Baseline ir Gene Very Effect size Anche Cons Optim 12 months 	measure; time ncidence ral high-risk cli high-risk cohor ored to presum ervative IRR=0 nistic IRR=0.44 of follow-up per	e-to-first STI as nic population: ts: ≥20 per 100 ptive partner tr .65	key seconda 10–20 per 10 PY reatment trial	ry 00 person-years (Balkus et al. 2	AT-confirmed; in (PY).	

SAMPLE SIZE: STI ACQUISITION

Baseline STI Incidence (per 100 PY)	Conservative (IRR=0.65)	Anchored (IRR=0.54)	Optimistic (IRR=0.44)
10	2,148 (80% power) 2,876 (90% power)	1,180 (80%) 1,580 (90%)	764 (80%) 1,022 (90%)
20%	1,074 (80%) 1,438 (90%)	590 (80%) 790 (90%)	382 (80%) 512 (90%)

EXPOSURE MEASUREMENT: PTB

Study Population Characteristics	Exposure Measurement	Intermediate Microbiota	Intervention Type	Symptom Status	Intervention Timing	Outcome Measurement	Sample Size		
	 Nugent-defined 	BV: Strongest as	sociation with PT	B when Nugent	t 7–10; ∼2-fold hi	gher risk (Leitich et	al., 2003).		
	 Amsel's criteria: Sensitivity 100% with high Nugent (9–10) and 81% with low Nugent (7–8); few missed cases (Rajni et al., 2022). 								
Key Findings	 Molecular CSTs: "Low lactobacilli" (↑ anaerobic diversity) ↑ PTB risk vs. L. crispatus dominance (OR 1.69) (Gudnadottir et al., 2022). 								
		BV in women with eld et al., 2024); m	•	`	, (, 2006); recurrent B 2008).	V ↑ PTB risk (OR		
	 Use Nugent sco cross-trial comp 	O ()	Amsel criteria (≥3,	/4) as primary n	nethods; combinii	ng both improves ro	bustness and		
Trial Design Considerations	Consider refine	d microbiota profil	ing with 16S rRN	A sequencing to	o offer insight into	o potential intervent	ion targets.		
	· ·	neasures across p by window for inte		•	ence or resolution	; early detection in t	the 1st–2nd		

INTERMEDIATE MICROBIOTA: PTB

Deeper Dive

- Krauss-Silva et al., 2014 (Rio de Janeiro; prospective cohort, n=1,699). Compared BV (7–10) vs intermediate (4–6) for sPTB: <34 wk RR 0.81 (95% CI 0.13–11.8); <37 wk RR 1.86 (0.41–8.47) → imprecise, no significant differences; BV-negative women were excluded, limiting interpretability.
- Tachawatcharapunya et al., 2017 (Thailand; prospective cohort, n=270; asymptomatic, early 3rd trimester). Intermediate (4–6) vs normal: aRR 1.3 (0.3–5.1) (ns). BV vs normal: aRR 2.3 (0.6–9.4) (ns). Small sample, wide CIs.
- Mulinganya et al., 2021 (DRC; prospective cohort, n=533; 2nd-trimester assessment). Intermediate vs healthy for PTB: aOR 1.02 (0.50–2.07) for combined PTB/LBW 2.78 (0.86 9.95) (ns). BV vs healthy: aOR 1.20 (0.66–2.22) for PTB (ns). Combined outcome and limited events.
- Cauci et al., 2002 (Seattle; cross-sectional, n=218; women in preterm labor). BV or intermediate (grouped) showed more deliveries ≤34 wk than normal; early PTB associated with enzymatic markers (e.g., sialidase). Design limits causal inference and does not isolate intermediate
- Leitich, 2007 (meta-analysis; 32 studies; n≈30,518). Intermediate flora was not significantly associated with PTD, late miscarriage, or infectious outcomes.
- Sesay, 2025 (Dissertation: Advancing Sexual Health for Cisgender Women: A Series of Studies Addressing Doxycycline Post-Exposure Prophylaxis, Vaginal Health, and Antimicrobial Resistance in Kenyan Women). The intermediate vaginal microbiota demonstrated a significantly higher risk of cervicitis (adjusted RR=1.32, 95% CI: 1.18-1.48) compared to normal microbiota, a risk surpassing that associated with BV (adjusted RR=1.12, 95% CI: 1.01-1.25).

INTERVENTION TIMING: PTB

Study Population Characteristics	Exposure Intermediate Measurement Microbiota	Intervention Type	Symptom Status	Intervention Timing	Outcome Measurement	Sample Size	
	 Earlier sampling (<20 wks) shows weaker or null effects. (Krauss 				_	ampling yields	
Key Findings	 Observational studies four <14weeks (Mulinganya et al, 2 	•	ssociations w	hen BV is	detected earlier;	first trimester,	
	 Systematic reviews suggest the reduction (Wu et al, 2025). 	nat early pregnai	ncy or precond	eption intervention	ons are required for	meaningful PTB	
Trial Design Considerations	• Enroll early (<12–14 wks) and interventions where feasible.	d sample longitud	dinally; conside	r preconception s	subcohorts or pre-pr	egnancy	

APPENDIX D: LITERATURE EXTRACTION SHEET*

	Years of Data/ Search Period						Number of	Other key		Participant	Participant
	Year Systematic		Sample	Participant age	Participant	Pregnancy	previous	participant	Participant		
ID Title Author	Publishe Reviews	✓ DOI ✓ Study Design ✓ Geography ✓ S	Size	_	race/ethnic 🗡	Status		characteristics ~		product use	washing statu
1 The vagin: Margherit	it 2025 2014-2024	10.101 Systematic revie Global: 6 stud	2,194 init	ត់៖ reproductive age (12 US studies s'	t Currently pre	g Not reported	Excluded studies v	Not reporte	Not reported	Reported; one
2 Reassessir Sawsan M	M 2025 1990-2019	10.101 Systematic revie Global: Ameri	1116 initi	ia reproductive age (1 Not reported	Currently pres	g Not reported	Excluded studies v	Not reporte	Not reported	Not reported
2 Reassessir Sawsan M	M 2025 1990-2019	10.101 Systematic revie Global: Ameri 1	19 studie	s reproductive age (1 Not reported	Currently pre	g Not reported	Excluded studies v	Not reporte	Not reported	Not reported
2 Reassessir Sawsan M	M 2025 1990-2019	10.101 Systematic revie Global: Ameri	9 studies	u reproductive age (1 Not reported	Currently pre	g Not reported	Excluded studies v	Not reporte	Not reported	Not reported
3 Systemati Kenfack-S	S; 2023 1986-2021	10.101 Systematic revie Global: 53.9%	3047 for I	P reproductive age (1 Not reported	Currently pre	g Not reported	None	Not reporte	Not reported	Not reported
4 Prevalenc Neha Seth	th 2025 2013-2023	10.118 Systematic revie Global; major 2	2337 initi	ia reproductive age (1 Not reported	Currently pre	g Not reported	None	Available fo	Not reported	Not reported
5 Basic vagi Leticia Kra	ra 2014 2006-2008	10.118 Prospective cohر Rio De Janeirc	. 1699	99 reproductive age(1	1{24.4% black; ?	3 Currently pre	g Not reported	Excluded women	Low SES - n	Not reported	Not reported
5 Basic vagi Leticia Kra	ra 2014 2006-2008	10.118 Prospective coh Rio De Janeiro	1699	99 reproductive age(1	1{ 24.4% black; ?	3 Currently pre	g Not reported	Excluded women	Low SES - n	Not reported	Not reported
6 The Preva Suphapho	o 2017	2014 Not ava Prospective cond Thailand	270	70 reproductive age(1	18 Not reported	Currently pre	g 50.6% primipar	o None	99.6% educ	Not reported	Not reported
6 The Preva Suphapho	o 2017	2014 Not ava Prospective con Thailand	270	70 reproductive age(1	⊥{Not reported	Currently pre	g 50.6% primipar	o None	99.6% educ	Not reported	Not reported
7 Bacterial \ Bosede B	3. 2016	2016 10.109 Prospective coh Nigeria	246	16 reproductive age(1	18 Not reported	Currently pre	g 37.4% nulliparo	ι None	most comm	Not reported	Not reported
8 Maternal Beng Kwa	a 2023 2014-2015	10.338 Prospective coh Malaysia	23-	reproductive age(1	1{ Ethnicity capt	L Currently pre	g 42.6% nulliparo	ι Pregnant women	52.7% recei	Not reported	Reported; exc
9 Prevalenc Guy Mulir	ir 2021 2017-2018	10.137 Prospective coh DRC		33 reproductive age (1							Found that wo
9 Prevalenc Guy Mulir	ir 2021 2017-2018	10.137 Prospective coh DRC	531	reproductive age (1	1 Tribe reporter	d Currently pre	g Did not report t	Excluded women	72.6% had '	Not reported	Found that wo
10 Effect of b Trishna M	A 2022 2008-2022		370 initia	al reproductive age (1	1 Not reported	Currently pre	g Not reported	None	Not reporte	Not reported	Not reported
11 The vagina Unnur Gu	u 2022 2014-2021	10.103: Systematic revie Global; subgroup						Excluded studies i	i Not reporte	Not reported	Not reported
11 The vagin; Unnur Gu	u 2022 2014-2021	10.103: Systematic revie Global; subgre	4321 initi	a reproductive age (1 Reported for 6	e Currently pre	g Not reported	Excluded studies i	i Not reporte	Not reported	Not reported

^{*}Complete extraction workbook (.xlsx) shared separately. The screenshot above serves only as an illustrative example of the captured inputs.

START CENTER